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WAVEGUIDE EFFECT IN A ONE-DIMENSIONAL PERIODICALLY PENETRABLE STRUCTURE 

S. V. Sukhinin UDC 517.947+534.2+535.42 

The waveguide properties of permeable one-dimensional periodic acoustic structures 
are studied here. These waveguide properties are associated with the existence of intrinsic 
waves localized in the vicinity of the structure. Their properties are described by general- 
ized eigenfunctions which are solutions of problems describing the steady oscillations about 
the structure. The possibility of the existence of generalized eigenfunctions localized 
in the vicinity of a one-dimensional periodic penetrable layer or about a periodic chain 
of permeable barriers is demonstrated in this study. Examples are presented of the wave- 
guide permeable periodic structures for which the boundaries asymptotic with respect to 
limited permeability or with respect to special geometric shape are studied, and also 
the properties of the natural oscillations, and eigenvalues are determined. These examples 
may serve as models both for experimental and numerical studies into the waveguide properties 
of a periodically permeable structure. 

I. Formulation of the Problems and Necessary Information. Let a space be filled with 
a medium in which the speed of sound is represented by c 2 and the density in a state of 
rest is represented by p=. The medium contains either a one-dimensional periodic layer 
(Fig. la) or a string of inclusions (Fig. ib) of another medium, where the speed of sound 
is c I, and the density in a state of rest is Pl. It is assumed that the boundary between 
these media is periodic along the y axis, with a period of 2~. It is assumed, further, 
that all motion within the media depends exclusively on two spatial variables: x, y. It 
is therefore convenient to utilize the following notation: ~i is the area on the (x, y) 
plane which simulates the layer or chain of inclusions, while ~2 models the area filled 
with the external medium, and r represents the boundary between these media (see Fig. i). 

Let f(x, y) exp (-iwt) describe the periodic sources of the sound. It is assumed that 
the sources are situated in the medium ~2, positioned periodically along the y axis with 
a period 2~, w is the angular frequency of the oscillations. The sound waves are described 

~' /_  / 1  ~ P 1  ~ jol , 01 

Fig. i 
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by acoustic perturbations in pressure pl(x, y, t) and p2(x, y, t) within the layer 
and in the external medium, while the steady-state acoustic oscillations are described by 
the functions Re [p1(x, y) exp (-i~t)] and Re [p2(x, y) exp (-i~t)], p1(x, y) and p2(x, y) 
must satisfy the Helmholtz equations in the corresponding regions and they must be complex- 
valued: 

(A + x~)p~ = o =  e,, (A + x~)p~ = ! ~ Q~ (1 .1 )  

(~ = w/c2, < = c2/c I, 5 is the Laplace operator). The sources are localized about the 
internal structure. This means that f(x, y) ~ 0 for rather large values of the variable x. 

At the boundary of contact between the media the conditions of continuity for pressure 
and for the gas-particle velocity component normal to the boundary must be satisfied, and n 
is the normal to F (see Fig. i): 

Pl ~ P2, p~OpffSn = plOp/On off F. ( 1 . 2 )  

Since ci, 01 and c2, 02 are constant in the corresponding areas, and the sources f(x, y) 
and the boundary of contact between the media is 2~-periodic along the y axis, the acoustic 
fields described by the functions Pl and P2 will also be 2~-periodic along the y axis. The 
solution of Eqs. (i.i) must satisfy the radiation conditions [1-3] 

P2= E a ~ e x p ( i k g +  t lx  1%2V~_k2), I x l > > l  ( 1 . 3 )  

( a~ and a?  a r e  c e r t a i n  complex  numbers  ( and  i f  x > 0, t h e n  we t a k e  a~, w h i l e  i f  x < 0,  
t h e n  a~ ) ,  k i s  an a r b i t r a r y  who le  number  c h a r a c t e r i z i n g  t h e  number  o f  t h e  mode) .  

In  t h e  f o l l o w i n g ,  p r o b l e m  ( 1 . 1 ) - ( 1 . 3 )  f o r  t h e  d e t e r m i n a t i o n  o f  t h e  a c o u s t i c  f i e l d  d e -  
s c r i b e d  by t h e  f u n c t i o n s  Pl  and P2,  b a s e d  on t h e  f a m i l i a r  d i s t r i b u t i o n  o f  o s c i l l a t i o n  s o u r c e s  
f ( x ,  y ) ,  w i l l  be r e f e r r e d  t o  as  t h e  WG p r o b l e m  ( w a v e g u i d e ) .  The WG p r o b l e m  r e p r e s e n t s  a 
m a t h e m a t i c a l  model  d e s c r i b i n g  t h e  s c a t t e r i n g  o f  a c o u s t i c  waves  f rom p e r i o d i c  s o u r c e s  a g a i n s t  
a one-dimensional periodic structure. It is expedient to investigate the validity of this 
model, as well as the existence and singleness of the solutions. 

The waveguide properties of the physical structure are defined by the eigenvalues and 
eigenfunctions of the WG problem. The properties of the mathematical model are studied 
with the aid of analytical operator-valued functions; such an approach allows us to employ 
the theory of the complex variable function. It must be noted that in the theory of diffrac- 
tion at infinitely permeable structures the correct understanding of the mathematical essence 
of the problems is extremely important for the development of effective approximation methods 
as well. Following [1-3], we can assume that the function of the parameter %, expressed 
through expression (1.3), is analytical on the infinite-sheeted Riemann surface A, i.e., 
its analytical continuation. 

In the following discussion we will use 

Definition i.i. The quasieigenvalue of the WG problem is that element I, of the Riemann 
surface A for which the solution of this problem is not single-valued or that there exists 
a nontrivial solution of the uniform problem (f ~ 0). The eisenvalue here is such a quasi- 
eigenvalue of i, for which the relationships (Re I,) (Rer 2 _ k 2) e 0 are satisfied for 
all whole numbers k, given that a~ ~ 0 or a~ ; 0 under the"radiation conditions from (1.3). 

The concept of quasieigenvalues is auxiliary in nature, the physical sense of these 
values not clear to the end. The eigenvalues and eigenfunctions describe the waveguide 
property of the structure and are, generally speaking, generalized eigenfunctions, since 
the energy of these oscillations may be unbounded, if it is calculated over the entire oscil- 
lation region. 

The qualitative behavior of the quasieigenvalues is described by the following assertion 
[1-4]: 

THEOREM i.i. The quasieigenvalues of the WG problem are discrete on the Riemann surface 
A. If the region ~2 is connected, the eigenvalues can only be real numbers. 

LEMMA i.I. The solution of the WG problem is a single one, provided that Iml > 0 

and Im/l 2 - k 2 > 0 fir all k. 
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Proof. If we multiply similar (f ~ 0) relationships (i.i) by the complex conjugate 
to Pl and P2 functions Pl and p2 and integrate over ~x and ~2, then by means of the Green's 
theorem we can derive the relationships 

~ (~,~• ] P~ I ~ - -  [ Vpa ]~) d.Qz + ] p~ (OptiOn) dr  = O, ,/ 
$21 r 

J" (~,~ I p~ I ~ - -  I Vp~ I ~) de~ - .[ ~ (OpJOn) dr  = O. 
~o lr" 

Let �9 = O~/P2, �9 > 0, and o = p2/o~, o > 0, and then, after multiplying the second of the 
relationships by �9 (or the first relationship by o) and combining the first equation with 
the second, taking into consideration the conditions of conjugacy (1.2), we can obtain the 
identity 

Having equated the imaginary part to zero, we write 

Im1=(Im%~)f I ~]p~[~df~ I+~ ]p~]~d~}~)=O. ( 1 . 4 )  

Hence Pl ~ 0 and P2 ~ 0. The lemma is proved. 

Remark i.I. The physical sense of Lemma i.i lies in the fact that the nonexistence 
of free oscillations about a periodic structure in a medium with absorption has been proved. 
Relationships analogous to (1.4) can also be derived for the ratio of the densities o. If 
the density of one of the media is equal to infinite in comparison with the other (~ = 0, 
if P2 + ~, or o = 0, provided that Pz ~ =), the absence of free oscillations in a medium 
with absorption follows out of (1.4) and out of the conditions of conjugacy (1.2). All 
of the calculations have been carried out for a single period along y. 

Let ~(x, y, x 0, Y0, ~) represent the fundamental solution of the Helmholtz equation 
(i.i) in region $2, satisfying the radiation conditions (1.3) and the conditions of periodi- 
city along y with the period 2~ [i-4]. We will subsequently use the following notation: 

= f,~, * denotes convolution, v = p - ~, p = Pl, if (x, y) e~l and p = P2, if (x, y) e ~2" 
For the functions v in view of relationships (I.i) and (1.2) the following equations are 

satisfied: 

v 1 : v 2, Ov~On = TOv2/On + (~ - -  l )O~/On on F (1.5) 

(v I and v 2 represent the narrowing of the v functions in regions ~ I and ~2). Since ~ and 
p satisfy radiation conditions (1.3), then v will also satisfy these conditions. ~ 

If we look for the solution of (1.5) in the form of the sum of the volumetric potential 
and the potential of a simple layer with densities p(x, y) and ~(x, y), p is localized in 
~i, v is determined on F, the function v(x, y) can be presented in the form 

(~, v) = ~ ~ (Xo, Vo) �9 (x, v, ~o, Vo) dro + ~ ~ (Xo, Vo) �9 (~, v, ~o, Vo) d ~ .  ( 1 . 6 )  
~o ~ 

Here and below, all the functions will be investigated in a single period such as, for exam- 
ple, in the band {0 ~ y ~ 2~}, Sj0 = {0 ~ y ~ 2z} N ~j, j = i, 2, F 0 = {0 ~ y ~ 2~} N r 

(see Fig. i). 

In view of (1.6), the conditions of radiation for the functions v(x, y) have been satis- 
fied. The following equations, in light of (1.5), are valid for the unknown functions p 
and v: 
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.Q~ (1.7) 

We have  [4 ,  5] 

LENNA 1 . 2 .  I f  "~ and p s a t i s f y  ( 1 . 7 ) ,  t h e  s o l u t o n  o f  t h e  WG p r o b l e m  p = v + ~,  where  
v i s  d e f i n e d  f rom ( 1 . 6 ) ,  and ~ r e p r e s e n t s  t h e  c o n v o l u t i o n  o f  t h e  f u n d a m e n t a l  s o l u t i o n  o f  

with the function f, describing the sources of the acoustic oscillations. If p(x, y) 
is the solution of WG problem, then p = v + ~ and the functions v and 0 corresponding to 
v and ~ satisfy relationship (1.7), which we will write as (v, p) = T(%, r, <)<(v, 9)>(T(%, 
r, K), i.e., the linear operator corresponding to (1.7) in Hilbert space H, H = L2(F~) • 
L2(r0) • L2(~z ~ )). 

With the aid of the data from [5], Lemma i.i and Lemma 1.2 have been proved. 

LEMMA 1.3. The operator T(%, ~, <): H + H, defined in (1.7), depends analytically 
on the parameter ~ at the Riemann surface A and continuously depends on the real parameters 
T and K, 0 _< �9 < i, <2 ~ i in strong operator norm. There exists an element ~.,. of the 
Riemann surface A for which the solution of (1.7) exists singly for all values"of the param- 
eters T, 0 <_ ~ < i, and K, ~2 ~ i. 

For continued discussion we require 

THEOREM 1.2. If the ratio Pz/P2 = T tends to zero (r § 0), then for sufficiently small 
the quasieigenvalues of %,(T) of the WG problem exist and converge in the topology of 

the Riemann surface A either toward v, if v,2K 2, i.e., the eigenvalue of the Laplace opera- 
tor in region ~i for functions satisfying the conditions of 2v-periodicity along y and the 
uniform Neumann conditions at the boundaries F of this region (lim%,(T)= v,) or to the quasi- 

IT-*O 

eigenvalues Pext of the Dirichlet problem for the Helmholtz equations in the region ~2 

r-+0 

If the ratio p~/pz = o tends toward zero (o ~ 0), for sufficiently small o the quasi- 
eigenvalues of %...(o).. exist in the WG problem and converge on ~, (lim%,(~) = ~.) if ~,2_K2 

\(;-~0 

are the eigenvalues of the Laplace operator in the region ~z with the conditions of Dirichlet 
on F and with the conditions of 2z-periodicity for the eigenfunctions, or to the quasieigen- 
values of Vex t in the Neumann problem in the region Q~ \(lim%*(~)o~0 = v~xt)- 

Proof. In view of Lemma 1.3 the conditions of Theorem 7.2 [5, p. 381] have been satis- 
fied. it can therefore be assumed that the quasieigenvalues of ~., in the WG problem depend 
continuously on the parameter ~, 0 -< �9 < i. When ~ = 0, relationships (1.7) are equivalent 
to a problem of the form 

(A + k2• = 0 in Q~, (A + kZ)p2 = / i n  Q2, 

Pl  = P2' oPllOn = 0 on F, 

(1.8) 

The functions f, Pi, and P2 satisfy the periodicity conditions, and P2, moreover, satisfies 
the radiation conditions. Since relationships (1.8) for the Pl function represent the Neu- 
mann problem in region ~z with conditions of 2~-periodicity along y for the solutions, and 
in the case of the P2 function, representing the Dirichlet problem for the Helmholtz equa- 
tions in Q2 with the radiation conditions at infinity, then with T close to zero, owing 
to continuity from ~, the quasieigenvalues corresponding to the WG problem are close either 
to v, or to ~ext o The second part of the theorem regarding the continuous dependence on 
parameter o, 0 ~ ~ < i, with respect to the quasieigenvalues of the WG problem is validated 
on the basis of analogous considerations. The theorem is proven. 

Let the investigated permeable structure ~z with boundary F have a period 2~/N, N is 
a natural number greater than unity. In this case, if p,(x, y) is a quasieigenfunction of the 
WG problem, p,(x, y + 2~n/N) will also be a quasieigenfunction of the WG problem for all 
whole numbers n and N. Let u(y) be a 2~-periodic function along y, whose expansion into 
a Fourier series for any natural number N can be written as follows: 
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+=o N +oo N 

u ( y ) =  ~, akexp( iky)= ~] E an+h~'exp[iY(n + kN)l = E u~(y). 
h=--oo n = l  k=--oo n = l  

By definition the function Un(Y) satisfy the conditions of quasiperiodicity 

un(y + 2g/N) = u~(g) exp ( ~ M N ) .  ( 1 . 9 )  

Let  us no te  t h a t  t h e s e  r e l a t i o n s h i p s  d e s c r i b e  the  s p e c i f i e s  of  o s c i l l a t i o n  about  a 2~/N- 
periodic structure. We generally say that (1.9) describes a shift in the phase of the oscil- 
lations to adjacentregions of the structure. 

Let Pn(X, y) be the solution of the WG problem for which the conditions of quasiperio- 
dicity in (1.9) are valid, and in this event the radiation conditions have the form 

p~(~, y, ~)= E c~exp[~(n+ kN)y+ ~lxl ~/'k2--(n+ k N ) ~ ]  �9 (1.10) 
~=-~ 

Functions of i such as (i.i0) are analytical on the Riemann surface A n of their analytical 
extension. The branching point of A n will be the numbers • + kN) for all whole k. Let 
An ~ be such a sheet of the Riemann surface A n with sections (-~, -min {n, N - n}] and 
[mirL {n, N - n}, +~), where the inequalities for all whole k are satisfied: 
ImV~ 2 - (n + kN) 2 > 0. From the standpoint of application the following is essential 

to the discussion. 

THEOREM 1.3. if the quasieigenfunction p*(x, y, i,) of the WG problem satisfies the 
conditions of quasiperiodicity in (1.9) and the corresponding quasieigenvalue of I, is found 
on the shape An ~ of the Riemann surface A n , then p*(x, y) diminishes with increasing dis- 
tance from the barrier and is an eigenfunction, while I, is a real eigenvalue of the WG prob- 
lem. 

Proof. Owing to the determination of the sheet An ~ all of the terms in the expression 
(i.i0) for the function p*(x, y) diminish with increasing distance from the barrier ~]. 
From relationships such as (1.4) it follows for p*(x, y) that I, is a real number. Since 
I, ~ An ~ then [I,I < min{n, N - n}, which means that Re/i, 2 - (n + kN) 2 = 0 for all whole 

k. QED 

2. Wavezuide Effect of a Permeable Layer. Let the region ~l simulate the layer being 
penetrated (see Fig. la). It is assumed that ~! is periodic along the y axis with a period 
2~/N. For various applied problems it is expedient to investigate the quasiperiodic solu- 
tions of the WG problem for certain numbers n and N, 1 ~ n < N, from condition (1.9). Let 
the velocity c I of wave propagation in the medium filling the ~l layer be less than the 
velocity c 2 of wave propagation in the medium ~2, < = c2/ci > i. In this case the follow- 
ing is valid. 

THEOREM 2.1. For sufficiently large K and sufficiently small x (or o) the ~l layer 
exhibits the waveguide effect. 

Proof. Let VkfK 2 be the eigenvalues of the Neumann problem for the Helmholtz equation 
in the ~l region as a class of functions satisfying the conditions of quasiperiodicity (1.9) 
for certain n and N and [Vll ~ Iv2[ ~ "'" In view of Theorem 1.2 for each fixed k there 
exist quasieigenvalues of I k in the WG problem with quasiperiodicity conditions such that 
there exist a limit transition in the topology of the Riemann surface A n , wh =]im %h(T). 

~0 

Since K may be a rather large number, there exist such Vk (at least one number) for which 
the inequality IVkl < min {n, N - n}, k = 1 ..... k 0 is valid. Quasieigenvalues of %k for 
the WG problem corresponding to v k near llkl < min{n, N - n}, k = i, .... k0 means that 
for sufficiently small x the inequality I k, k = i, ..., k0 is valid. It may therefore be 
assumed that for sufficiently small T the quasieigenvalues of I k, k = i, ..., k 0 belong 
to the sheet An ~ of the Riemann surface A n . It follows from Theorem 1.3 that I k are real 
eigenvalues of the WG problem, and the eigenfunctions corresponding to I k are localized 
in the vicinity of the penetrated layer ~i, k = i, ..., k0. Let ~kf~ 2 be the eigenvalues 
of the Dirichlet problem for the Laplace operator in the ~ region as a class of functions 
satisfying the conditions of quasiperiodicity (i.9) for certain fixed N and n; k 0, n, and 
N are natural numbers. In view of Theorem 1.2 there exist quasieigenvalues of I k in the 
WG problem with quasiperiodicity conditions such that lim ~h(o) = ~k in the topology of the 

O~0 
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Riemann surface A n . For any fixed geometry of E l and fixed n and N there exists a suffi- 
ciently large number < such that for certain k, k = i, .... k 0 the inequality IPkl < 
min {n, N - n} is satisfied. Therefore, for sufficiently small o the quasieigenvalues of 
i k, k = 1 ..... k0, corresponding to Pk, belong to the sheet An ~ of the Riemann surface 
A n . In view of Theorem 1.3, these quasieigenvalues are both eigenvalues and real. The 
theorem has been proved. 

Remark 2.1. Here and below, according to R. M. Garipov, the waveguide effect of a 
one-dimensional periodically penetratable structure will be understood to refer to the exist- 
ence of generalized eigenfunctions localized in the vicinity of that structure. 

Remark 2.2. If the quasieigenfunction of the WG problem is localized in the vicinity 
of the structure ~i, then the corresponding quasieigenvalues are eigenvalues and real num- 
bers. 

Let the layer ~l have the shape shown in Fig. 2 and let it satisfy conditions of 2z/N- 
periodicity along the y axis, c I and c 2 are fixed, and s is the transverse dimension of 
the constriction. In this event the following is valid. 

THEOREM 2.2. The ~i layer described in Fig. 2, for sufficiently small �9 and s, exhibit 
the waveguide effect. 

Proof. Let ~k = Vk zK2 be the eigenvalue of the New, ann problem for the Laplace operator 
in the region ~i in the class of functions satisfying the quasiperiodicity conditions (1.9). 
For sufficiently small g there exist [5] gk which are close to the eigenvalues of the Neu- 
mann problem for the Laplace equation in the finite subregions of ~l, derived from ~l for 
e = 0. Since zero is the eigenva!ue of the Neumann problem, for sufficiently small s there 
exist always at least one (or several) Sk, k = 1 ..... k0, such that IVkl < min {n, N - n}. 
On the strength of Theorem 1.2 there exist quasieigenvalues of %k in the WG problem such 
that vk : ]iml~(T), and for sufficiently small T we can therefore assume that ik(T) , k = 

T~0 

i, ..., k0 are situated on the An ~ sheet of the Riemann surface A n . Consequently, the condi- 
tions of Theorem 1.3 have been satisfied, which was what had to be proved. 

Theorems 2.1 and 2.2 are connected to the "internal" geometry of the region ~i, which 
is "taken into consideration" by the eigenvaiues of the Dirichlet problem or by the Neumann 
problem for the Laplace operator in the region ~i. The theorem which follows below is con- 
nected to the "external" properties of the region QI. 

Let the ~i layer exhibit a geometry such as that shown in Fig. 3a-c, the period of 
~l along the y axis being equal to 2v/N, c I and c 2 are certain arbitrary fixed numbers and 

Fig. 2 

I 

~2 

a b 

Q2 

Fig. 3 

C 

K2~ 
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a b c 

2~/N #e 2~/N 

Fig. 4 

represents the width of the resonator neck in cases a and b of Fig. 3 or the transverse 
dimension of the half-open channel (Fig. 3c). We then have 

THEOREM 2.3. The ~i layer in Fig. 3 for sufficiently small o and E exhibits the wave- 
guide effect. 

Proof. On the strength of Theorem 1.2 for sufficiently small o the quasieigenvalues 
of X k in the WG problem are close to the quasieigenvalues of ~k in the Neumann problem for 
the region ~2. Given sufficiently small r the quantities v k are close in the topology of 
the Riemann surface A n to the corresponding numbers describing the intrinsic oscillations 
in the resonator (E = 0), or in the neck of the resonator, or in the half-open channel [2]. 
For arbitrary n and N, 1 ~ n < N, for sufficiently small e and a, s m 1 the inequality 
IXkl < min {n, N - n}, k = i ..... k c is valid. It might be assumed that for small e and 
o all %k, k = i, ..., k 0 are found on the An ~ sheet of the Riemann surface A n . The condi- 
tions of Theorem 1.3 for the quasieigenvalues of %k, k = i ..... k 0 in the WG problem are 
satisfied and Theorem 2.3 is proved. 

3. Waveguide Effect for a Discontinuous Periodic Structure. Let ~2 be a connected 
region. In this case ~i has several connected components in the 2~-period and describes 
the periodic connection of medium i to medium 2 (Fig. 4a-c). We have used the following 
notation: Qe, the channel or orifice; ~int, the interior of the resonators (s = 0) (Fig. 
4c); ~ext, the exterior of the resonators; ~2 = ~int + ~s + ~ext" Figure 4a shows that 

~int = ~, ~e = #, ~ext = ~2; Fig. 4b shows that ~int = $, ~2 = ~r + fiext" 

Let the region ~i consist of N connected components in the band 0 ~ y ~ 2~ and, more- 
over, it is assumed to be periodic along the y axis with a period 2~/N. We have 

THEOREM 3.1. The discontinuous one-dimensional periodic structure of ~I for sufficient- 
ly small ~ exhibits the waveguide effect. 

Proof. On the strength of Theorem 1.2 there exist quasieigenvalues of ~k in the WG 
problem with conditions (1.9) such that lim lk(T)= V k, provided that ~k = Vk 2<2 is the 

~0 

eigenvalue of the Laplace operator in one of the connected components of region ~ with 
the Neumann conditions at the boundaries of this region. Let ~k, k = i, .~ k0 be such 
eigenvalues for which the inequality IVkl < min {n, N - n}, k = 1 ..... k0 is valid. Then, 
for sufficiently small T there exists the inequality llkl < min{n, N - n}, k = i, ..., 
k 0 for some number n, 1 ~ n < N. Therefore, for the numbers %k the conditions of Theorem 
1.3 have been satisfied, which is what had to be proved. 

Remark 3.1. Since zero is the eigenvalue of the Laplace operator with the Neumann 
conditions at the boundaries of ~l, for any < there exist at least one number lk such that 
l%kl < min{n, N - n} for all sufficiently small ~. 

Let a chain of penetrable barriers have the form shown in Fig. 4b, c. The quantities 
r and s characterize the width and length of the ~E channels. The following is then valid. 

THEOREM 3.2. The one-dimensional periodic chain of penetrable barriers ~l (see Fig. 
4b, c) for large s and sufficiently small o and s exhibits the waveguide effect. 

Proof. On the strength of Theorem 1.2 for small o the quasieigenvalues of Xk in the 
WG problem are close to the quasieigenvalues of Sk for the Neumann problem with the Helmholtz 
equation in region ~2. The quasieigenvalues of ~k for the Neumann problem in ~2 on the 
basis of [2] for sufficiently small e are close to the numbers v k, if Vk ~ represents the 
eigenvalues of the Neumann problem for the Laplace operator in the ~int region (see Fig. 
4c) or Uk = kz/s (Fig. 4b, c). In the latter case v k describe the intrinsic oscillations 
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in the ~g channel. Let v k, k = i, .... k0 be numbers such that IVkl < min{n, N - n}, in 
which case, for sufficiently small E and o, the quasieigenvalues of Ik(e, o) in the WG prob- 

lem satisfy the inequality llkl < min {n, N - n}, k = i, .... k 0. And in this case as well, 
for the WG problem, the conditions of quasiperiodicity (1.9) are valid, the conditions of 

Theorem 1.3 having been satisfied. It may therefore be assumed that I k belongs to the An ~ 
sheet of the Riemann surface A n , which is what had to be proved. 

The study of the waveguide properties of various structures has important applied sig- 
nificance. However, the author knows of no studies which have investigated the waveguide 
properties of one-dimensional periodically penetrable structures. Investigations into the 
waveguide properties of structures that are uniform with respect to one of the variable 
parameters can be found in [6]. These investigations were further developed in [7, 8]. 

4. Example. Waveguide Property of Cylindrical Air Cavities in Aluminum. Let the 
structure in Fig. 4b describe cylindrical air cavities in aluminum: cz= 330 m/sec, c 2 = 
5200 m/sec, and < = 15.7, with densities of Pl = 1.21 kg/m 3, P2 = 2700 kg/m 3, with �9 = 
0.00045. We note that the values of the parameters satisfy the conditions of Theorem 3.1. 
Therefore, in approximate terms we can calculate the eigenvalues of this structure. Let 
all of the cylindrical cavities be periodic along the y axis and let them have the identical 
radius R, the distances between the centers of the cavities represented by H (H > 2R and 
the cavities are not in contact with each other). If on a scale of a single wavelength 
along the y axis there are N cavities, the wavelength L = NH. The conditions of radiation 
(1.3) are written as follows: 

~-c~ 

P2 = ~ ]  a ~  exp  [(iy2kg/NH) + i I x I ]/')~,2 _ (2gk/NH)2] (4.1) 

(i = m/5200). The eigenvalues for gk of the Laplace operator in a circle of radius R with 
the Neumann conditions at the boundary can be found from tables presented in [9]. Then 

~0 = 0; $1R = 3.832; $2R = 7.016; ~R = 10.173; Sz = R-Z'3.832; $2 = R-I"7.016; $3 = E-z" 
10.173. With the aid of the relationship Sk = Vk 2<2, presented in the proof of Theorem 
3.1, we can calculate ~k = ~-~" Consequently, v0 = 0; v z = 0.1247/V~-; v 2 = 0.169/v~-~ 
v3 = 0.203/~ Since on the strength of Theorem 3.1, ik(T) + Vk, as T ~ 0 and I = m/c2, 
we will calculate the circular frequency w k = %kC2; ~0 = 0; w z = 648.4/4 ~2 = 878.8/~ 
~3 = i055.6/~. If R = 0.005 m, the resonance frequencies are equal to ~l = 9169.7, ~2 = 
12,428; m~ = 14,928. For convenience in calculation and experimental verifications, let 
the distance between the centers of the orifices be H = 0.02 m. Let us also assume that 
the oscillations in the adjacent orifices are in counterphase, and in this case we can as- 
sume in (1.9) that N = 2, n = i. According to the proof of Theorem 3.1, the eigenvalues 
must satisfy the inequality which follows from (4.1): 

I % h [ < m i n  {n~/H, N ~ / H - - n ~ / H }  = t 5 7 , 0 ,  

v l  = 0 . t 2 4 7 / ~ =  1 .763,  v 2 = 2 .39,  v 3 = 2 .87.  

Since I k ~ v k as �9 ~ 0, we note that all of the found frequencies may govern the possible 
waveguide property of the structure. For the sake of experimental convenience we can cal- 
culate, in approximate terms, the velocity of propagation for the intrinsic modes along 
the y axis. In these cases the wave number is equal to T/H, while the propagation velo- 
city v k for the corresponding intrinsic mode is v k = wkH/V (or v z = 58.376 m/sec, v 2 = 79.12 
m/sec, v 3 = 95.03 m/sec). We know of no experimental studies into the decelerating and 
waveguide properties of periodic acoustic structures. 

The author wishes to express his gratitude to R. M. Garipov for a number of valued 
remarks. 
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SELF-OSCILLATION REGIMES IN A SYSTEM OF FOUR 

QUASI-TW0-DIMENSIONAL VORTICES 

A. M. Batchaev UDC 532.51 

Particular attention has recently been devoted to experimental studies of transitional 
processes in the appearance of turbulence in simple hydrodynamic flows. In the present 
study we present a model of the elementary cell of a quasi-two-dimensional double-period 
flow that is related to Kolmogorov flow [1-4]. The derived results may prove to be useful, 
for example, in application to the problem of constructing limited-mode systems which, in 
basic outline, describe the nonlinear processes occurring in hydrodynamic flows [2, 3]. 

The primary flow regime is a steady system of four quasi-two-dimensional vortices. 
The self-oscillations in such a system were first detected in studies of the convective 
motion in a Haley-Shaw cell [5, 6], and subsequently in a uniform fluid in which the flow 
was induced by means of a magnetohydrodynamic drive [7-9]. 

It is the aim of the present study to further~investigate the above-indicated system 
of vortices. The flow is generated in a horizontal rectangular cuvette in layers of various 
thicknesses, under the action of an MHD force periodic along both coordinates. In particu- 
lar, we have derived the relationship between the amplitudes of the self-oscillations and 
the Reynolds number, and a spectral analysis of the self-oscillation regimes has been car- 
ried out. We have examined the effect of friction against the bottom on the characteristics 

of the flow. 

i. Laboratory Equipment and the Experimental Method. The experiments were conducted 
on an installation such as that described in [9]. The flow was established within a rectan- 
gular cuvette having dimensions of 24 x 12 • 3 cm, positioned horizontally on a Plexiglas 
frame. Two three-pole electromagnets are contained symmetrically within the frame. The 
magnetic field induction B of the electromagnets within the region of the cuvette has a 
vertical component which can approximately be presented in the form 

Bz(x,  y, z) = Bo(z) sin (2n~Lx)  cos (2g~Ly) .  

H e r e  B 0 ( z )  i s  t h e  a m p l i t u d e  B z ( x ,  y ,  z )  on t h e  p l a n e  z = c o n s t ;  L x = 24 cm and  L ,  = 12 cm 
represent the length and width of the cuvette along the x and y axes, lying on t~e plane 
z = 0 and coincident with the two adjacent sides of the cuvette. The z axis is directed 
vertically upward. An electrolyte (a CuS04 solution with a concentration of i00 g/liter) 
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